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Classical and quantum bound states of a test particle in the regular gravitational 
field of a gravitational soliton are investigated. The quantum spectrum is very 
similar to that of a Newtortian atom, except for the absence of s orbitals. 

1. INTRODUCTION 

Gravitational solitons are regular static solutions of Einstein-Higgs 
(EH) (Kodama, 1978), Einstein-Maxwell-Higgs (EMH) (Bronnikov, 1973; 
Cl6ment, 1981a), or Einstein-Yang-Mills-Higgs (EYMH) (C16ment, 1981b) 
equations, in the case of a repulsive Higgs field (coupled negatively to 
gravity). These solutions have in common a spatial geometry with two 
symmetrical asymptotically flat regions. 

In two preceding papers (Chetouani and C16ment, 1984; C16ment, 
1984) we have studied the classical and quantum scattering of test particles 
by a light gravitational soliton (in which case Newtonian effects may be 
neglected before spatial geometrical effects). We now complete this study by 
the investigation of bound states of test particles in the gravitational field of 
the soliton. Because this field is regular, a discrete number of bound states 
survive quantization, contrary to the case of the gravitational field of a point 
particle [in which test particles tunnel through the centrifugal barrier into 
the Schwarzschild black hole (Misner et al., 1973)]. Thus we can have 
gravitational atoms. 

For simplicity, our study is restricted to the case of a spinless, neutral 
test particle in the field of an EMH or EYMH soliton, in the case of a 
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vanishing self-coupling of the Higgs field [in this case the EH soliton is 
massless; bound states of a Dirac particle with a massive EH soliton have 
been studied numerically by de Oliveira (1982)]. The classical bound state 
spectrum is derived in Section 2 of this paper. Section 3 is devoted to the 
study of quantum bound states, for which we approximately determine the 
lowest energy levels for each value of the orbital quantum number l. 

2. CLASSICAL BOUND STATES 

The geometry of the EMH or EYMH soliton is given (in the case of a 
vanishing self-coupling of the Higgs field) by 

ds2=goodt2-g~ol[du2 +(O 2 + u2)(dO 2 + sin2Odqo2)] (1 / 

with 

cos2(~rX/2) 
goo cos2~,r/ 

TI = arctan(~oo ) (2) 

The dimensionless constant h and characteristic length Oo are related to the 
mass M and electric or magnetic charge Q of the soliton by 

sin(rr)~/2) = (47rG) 1/2 M 
, 

Q2 sin( rr)~ / 2 )  (3) 
O0 = 8 M  ~ r ~ / 2  

where G is Newton's constant. 
The first-order differential equations for time- or lightlike geodesics in 

a spherically symmetric static metric are (in the plane 0 = ~r/2) 

-1 dq~ 
- g o o  g , p , ~ - ~  = o 

{ d r ) 2 - g ~ o -  gool = - 1  + fl 2 (4) -googrr~-~-2 -1 2 

where o and f12(f12 ~1, may be negative) are integration constants. We 
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assume X << 1, so 
approximate 

goo =1 + X2 (~2 - - ~ )  

The equation for the radial motion of a test particle is then 

(du/2 dtj +v(u)=o 

with 

U = -%-cos2~ + X 2 772 - _/32 
P0 

that the gravitational potential is small, and we may 

(5) 

(6) 

(7) 

71 being related to u by (2). 
For/32 >/0, the particle can go to infinity, so that there are no bound 

states, unless the effective potential U(u) has at least two maxima. It can be 
checked that this is not the case. 

For those values of 132 < 0 such that Umi~ ~< 0, the particle is bound. 
The extrema of U(rt) being solutions of 

0 2 
2X2~ = _-~-sin2~7 (8) 

Po 

we must distinguish between two cases: 
(a) o ~< XP0. The only solution of equation (8) is 71 = 0, i.e., u = 0, which 

gives a minimum of U, with the value 

Um~ = ~ _ X2_~ _/32 

The bound state spectrum then corresponds to 

(9) 

(b) o > Xp 0. Then equation (8) has the three solutions */= 0, which 
corresponds to a local maximum, and ~/= + %, which correspond to 
degenerate minima, because 

d2U, , 2__0 2 20 2 sin2no +2X 2 = 0 (11) ~,~o)= pg cos2~o+2~, R> pg 2,70 

p~ x ~ ~ < o ( Io )  
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In this case the bound state spectrum is given by 

X2( tan %,/o + 7 / 2 - - ~ )  ~<f12<O (12) 

[the left-hand side of (12) can be shown to be strictly negative]. 

is 

3. QUANTUM BOUND STATES 

The stationary Klein-Gordon equation for a scalar particle of mass m 

h2lgl-1/2Oi[ lgl l /2gi jOj t~]+(m2- E2gffol)~b=O (13) 

Putting 

gij = gffolgij (14) 

where g~j is the Ellis metric, we rewrite equation (13) as 

h 2 l g [ - 1 / 2  Or [[gll/2gij(gj ~ ] § gffoX( m 2 --  E 2gff01 ) ~b = 0 (15) 

and use the results of Cldment (1984) for the separation of this equation in 
spherical coordinates. The expansion of ff in spherical harmonics 

o0 
q,(x) = ~_, (pg + u2) - l /2 f t (u )Y[" (O,ep  ) (16) 

/ = 0  

reduces (15) to the radial equation 

- h V , " ( u ) +  
h2p 2 h21( l + 1) 

{ 
(og + u 2)2 p~ + u 2 

] 
+ g~oi(m 2 -- E2gffol) l f l (u ) = 0 

(17) 

which we may write, approximating again goo by (5), as 

with 

- h 2 f ' ( u ) + V ( u ) f ( u ) = O  

9 2 

V= P~ 2 

(18) 

(19) 
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where 
X2p2 

a-- (2E 2 - m  2) h2 ( 2 0 )  

Following further Clement (1984), we insist that the states of a neutral 
particle be eigenstates of the charge conjugation operator, defined by the 
discrete transformation [the "new"  symmetry of metric (1)] 

u -- ,  - u ( 2 1 )  

This means that the radial wave function f l ( u )  must either be even or odd 
under this transformation. The additional requirement that we recover usual 
flat-space quantum mechanics in the limit P0 '-' 0 then selects odd wave 
functions 

f , ( -  u) = - f , ( u )  (22) 

which of course are also regular wave functions. Because of this condition, 
we may now assume u >1 0. 

The quantum effective potential I/(7/) is proportional to the classical 
potential U(7) given by (7) (the correspondence is o = h21(l + 1 ) / E  2, 1 - f12 
= m 2 / E  2), with additional quantum corrections. However, the behaviors of 
these functions are qualitatively the same. We will concentrate in the 
following discussion on the approximate determination of the lowest energy 
level for a given l. 

The extrema of the potential V(7) are the solutions of 

2ct 7 = [1(1 + 1)+  2cos27] sin27 (23) 

Here again we distinguish between two cases: 
(a) l ( l  + 1) ~< a -  2. The only solution of equation (23) is 7 = 0, which 

gives a minimum. 
(b) l ( l  + 1) > a - 2 .  7 = 0 is now a maximum, but equation (23) has, for 

ct > 0, another solution 7 = 70, which is a minimum because 

d 2 V "  " 2h---~216cos27osin27o - 2COS47o - l( l + 1 ) c o s 2 7 o  + or] ( 7 0 )  : 

8h 2 
> - - cos270s in270  > 0 (24) 

The parameter a being an increasing function of E, the lowest energy 
level E 0 for a given l belongs to case (b), and lies above the value given by 
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V(~o) = 0 because of the uncertainty relations. A standard quantum me- 
chanical argument applied to the one-dimensional Schr/3dinger equation 
(18) leads to 

o (p,~, + v )  = V ( u o ) + ( d  + ~ v"(Uo)(U - Uo) 2) 

> V(uo )+  h[ ~ v,,~ _ ~ . -  , U o ) ]  1/2 (25) 

Let us discuss this inequality separately for the cases l = 0 (in which case 
spherical symmetry actually leads to a stronger inequality, which we shall 
not need) and 14: 0. 

For l = 0, taking into account the.inequality (24) and the relation 

d 2 V .  , d 2 V ,  , 1 4 
(Uo) =-S-~_2 tno)- LScos 71o 

aT/ Po 

we derive from (25) the inequality 

(26) 

p~ cos4rlo+2COS3~7osinv/o + a  ~1~-'-4- -< - (27) 

Now we note that for the bound states to be stable (no tunneling) we must 
have E 2 < m 2 hence 

or, using (23), 

which gives 

cos4~o +2cos3v/osin~o < a ~ - 77 2 (28) 

cotan~/0 ~2 
1 + ~ -< --47/o - 7o (29) 

7/o _< 1.05 (30) 

Using again the condition E 2 < m 2, the definition (20) of a, and its relation 
(23) to ~0, it follows that 

m 2 ~ p ~  
- -  > a>_ 0.147 (31) 

h 2 
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or (inserting the appropriate power of c) 

m >  m 0=1 3 6 ( h c )  1/2 
- " k 0 2 M~ ( 3 2 )  

where M 0 = (hc /G)  x/2 = 2.18 • 10 -5 g is the Planck mass. Assuming that Q 
is either the unit electric charge e or the Schwinger magnetic charge hc/e,  
we find m 0 =15.9M 0 for the EMH soliton, or m 0 = 0.116M 0 for the EYMH 
soliton. 

Thus, for bona fide test particles (of mass small before the Planck 
mass), there is no bound state for 1 = 0. 

For 1 #: 0, the preceding argument does not restrict the possible values 
of m. There are bound states for any 1 >/1, and we may use the inequality 
(25) to estimate the value of the lowest energy level for a given l, in the 
nonrelativistic approximation E = m. In this case 

from equation (20), and is 
solution of equation (23) is 

m2~.2p 2 
a - - -  (33) 

h 2 

small for light test particles. Therefore the 

2[ ~ I ,34/ r/o= 1 1(1+1) 

Introducing the nonrelativistic energy ~ = E -  m, we finally obtain from 
inequality (25) the lower bound 

- - >  
m 2 1 ( l + 1 )  - - W c  1 -  [ l ( l+1 )1  (35) 

which is identical to what we would obtain from a Newtonian potential in 
the same approximation. 

To conclude, the energy levels of a test particle in the field of a 
gravitational soliton are approximately the same as those of a Newtonian 
atom, except for the absence of the levels l = 0. It should be borne in mind, 
however, that the binding energies (35) are extremely small, and therefore 
the level structure is unobservable, unless M and m are not much smaller 
than the Planck mass. 
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